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Abstract

Despite systemic therapy and cystectomy, bladder cancer is characterized by a high recur-

rence rate. Serum glycomics represents a promising source of prognostic markers for moni-

toring patients. Our approach, which we refer to as “glycan node analysis”, constitutes the

first example of molecularly “bottom-up” glycomics. It is based on a global glycan methyla-

tion analysis procedure that is applied to whole blood plasma/serum. The approach detects

and quantifies partially methylated alditol acetates arising from unique glycan features such

as α2–6 sialylation, β1–4 branching, and core fucosylation that have been pooled together

from across all intact glycans within a sample into a single GC-MS chromatographic peak.

We applied this method to 122 plasma samples from former and current bladder cancer

patients (n = 72 former cancer patients with currently no evidence of disease (NED); n = 38

non-muscle invasive bladder cancer (NMIBC) patients; and n = 12 muscle invasive bladder

cancer (MIBC) patients) along with plasma from 30 certifiably healthy living kidney donors.

Markers for α2–6 sialylation, β1–4 branching, β1–6 branching, and outer-arm fucosylation

were able to separate current and former (NED) cases from certifiably healthy controls

(ROC curve c-statistics ~ 0.80); but NED, NMIBC, and MIBC were not distinguished from

one another. Based on the unexpectedly high levels of these glycan nodes in the NED

patients, we hypothesized that recurrence of this disease could be predicted by some of the

elevated glycan features. Indeed, α2–6 sialylation and β1–6 branching were able to predict

recurrence from the NED state using a Cox proportional hazards regression model adjusted

for age, gender, and time from cancer. The levels of these two glycan features were corre-

lated to C-reactive protein concentration, an inflammation marker and known prognostic

indicator for bladder cancer, further strengthening the link between inflammation and abnor-

mal plasma protein glycosylation.

Introduction

Urothelial cell carcinoma (UCC) or bladder cancer is one of the top ten causes of cancer deaths

annually [1]. From a clinical perspective, there are two major forms of this cancer: 1) non-
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muscle-invasive bladder cancer (NMIBC; stages pTa/pT1/pTis) and 2) muscle-invasive blad-

der cancer (MIBC; stages pT2+). Early detection of bladder cancer is very important; patients

with non-muscle-invasive tumors have a much higher 5-year survival rate—88% for NMIBC

patients relative to 41% for MIBC patients [2]. Yet despite the stage at which it is diagnosed,

high recurrence rate is one of the essential characteristics of this cancer [3]. Therefore, even if

diagnosed at early stages and treated, former bladder cancer patients need to be monitored fre-

quently. Currently, common methods for detecting bladder cancer and monitoring for its

recurrence include: cystoscopy (which is invasive and expensive [4]), urine cytology (which

has low sensitivity for low-grade bladder cancer [5]), and computed tomography (CT) screen-

ing (which may not detect small tumors [6]). Accordingly, there has been a wide search for

new biomarkers that are noninvasive, cost effective, and can outperform cytology [7–10].

At present there are no clinically employed serum-based markers for monitoring patients

after their treatment. Targeted glycomics, particularly when combined with other well defined

markers and risk stratification models, represents a promising source for a new generation of

bladder cancer markers [11]. Some evidence toward this end based on the detection of the Sia-

lyl Lewisa antigen [12, 13] and analysis of intact N-glycans [14, 15] in blood plasma/serum (P/

S) from bladder cancer patients has been obtained. Aberrant glycosylation is a universal fea-

ture of cancer [16] where it appears to enable the ability of tumor cells to avoid innate immune

detection [17]. The changes in structure and abundance of glycans are often caused by dysre-

gulated glycosyltransferase (GT) activity [16]. Thus conceptually, a targeted glycan analysis

technique that could provide one-to-one surrogate data for abnormal GT activity using rou-

tinely available clinical samples and that relied upon existing clinical technology could be quite

valuable.

In 2013, we developed a molecularly bottom-up approach called glycan node analysis that,

unlike other approaches used in P/S glycomics, focuses on the analysis of monosaccharide and

linkage-specific glycan “nodes” instead of intact glycans [18–21]. It does this by employing the

principles and processing chemistry of glycan methylation analysis (i.e., linkage analysis; Fig 1)

to unfractionated P/S. This pools together each unique monosaccharide-and-linkage-specific

glycan feature or glycan “node” from across all the normal and aberrant glycan structures in a

given sample, providing a more direct surrogate measurement of GT activity than any single

intact glycan. Moreover, many of these glycan nodes correspond directly and quantitatively to

interesting glycan features such as “core fucosylation”, “bisecting GlcNAc”, and “β1–6 branch-

ing”—all captured as single GC-MS chromatographic peaks (Fig 2)

Our recent large lung cancer study provided important information about the diagnostic

and prognostic value of P/S glycan nodes in lung cancer as well as other types of cancer [21].

In particular, we observed strong stage-dependence, but tissue-of-tumor-origin independence

of elevated P/S glycan features. Moreover, we found that glycan nodes corresponding to α2–6

sialylation, β1–4 branching and β1–6 branching were able to predict survival and progression.

The primary purposes of this study were to evaluate the ability of unique glycan features, quan-

tified via glycan node analysis, to 1) evaluate the potential ability of glycan nodes to distinguish

MIBC from NMIBC, 2) distinguish NMIBC patients from patients with a history of bladder

cancer but currently exhibiting no clinical evidence of disease (NED), and 3) evaluate the abil-

ity of glycan nodes to predict recurrence from a state of remission (i.e., the NED state). Based

on our observations in lung cancer [21], we anticipated findings of potential clinical interest

under each objective. Moreover, elevated blood plasma protein glycosylation is known to be

associated with inflammation in some non-cancerous clinical conditions [22–24]. Since C-

reactive protein (CRP) is a well-studied marker of inflammation [25] as well as a prognostic

marker for UCC [26–29], we also evaluated the quantitative relationship between glycan nodes

that were prognostically useful in NED patients and CRP.
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Fig 1. Molecular overview of the glycan “node” analysis procedure. For glycans from blood plasma and other

biofluids, O-linked glycans are released during permethylation, while N-linked glycans and glycolipids are released

during acid hydrolysis. The unique pattern of methylation and acetylation in the final partially methylated alditol

acetates (PMAAs) corresponds to the unique “glycan node” in the original glycan polymer and provides the molecular

basis for separation and quantification by GC-MS. Figure adapted with permission from Borges CR et al. Anal. Chem.

2013, 85(5):2927–2936. Copyright 2013 American Chemical Society.

https://doi.org/10.1371/journal.pone.0201208.g001
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Materials and methods

Plasma samples

EDTA plasma samples from MIBC (n = 12), NMIBC (n = 39) and NED patients (n = 72), as

well as certifiably healthy living kidney donors (n = 30) were enrolled in the Multidisciplinary

Biobank at Mayo Clinic Arizona under a Mayo Clinic Institutional Review Board (IRB)-

approved protocol. Patients eligible for enrollment were those seen at Mayo Clinic Arizona

who were� 18 years old, able to provide informed consent, and undergoing evaluation as

either a potential living kidney donor or for genitourinary diseases. Detailed inclusion & exclu-

sion criteria for living kidney donors are provided in Supporting Information (S1 Appendix).

Fig 2. Conceptual overview of the glycan “node” analysis concept. The procedure consists of applying glycan methylation analysis (i.e., linkage analysis) to whole

biofluids. Intact normal and abnormal glycans including O-glycans, N-glycans and glycolipids, are processed and transformed into partially methylated alditol acetates

(PMAAs, Fig 1), each of which corresponds to a particular monosaccharide-and-linkage-specific glycan “node” in the original polymer. As illustrated, analytically

pooling together the glycan nodes from amongst all the aberrant intact glycan structures provides a more direct surrogate measurement of abnormal glycosyltransferase

activity than any individual intact glycan, while simultaneously converting unique glycan features such as “core fucosylation”, “α2–6 sialylation”, “bisecting GlcNAc”,

and “β1–6 branching” into single analytical signals. Actual extracted ion chromatograms from 9-μL blood plasma samples are shown. Numbers adjacent to

monosaccharide residues in glycan structures indicate the position at which the higher residue is linked to the lower residue. Figure adapted with permission from

Borges CR et al. Anal. Chem. 2013, 85(5):2927–2936. Copyright 2013 American Chemical Society.

https://doi.org/10.1371/journal.pone.0201208.g002
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None of the living kidney donor patients smoked at the time of health screening and blood col-

lection; 27% were former smokers and 73% never smoked. Living kidney donor and UCC

patients were excluded if they declined to participate or if the banking of their biospecimens

would compromise the availability of tissue for diagnosis and standard clinical care. All speci-

mens were collected during the time frame of June 2010 through Feb. 2016. Standard operat-

ing protocols and blood collections were performed as previously described [30]. All

specimens were stored at -80˚C prior to shipment to ASU and maintained at -80˚C at ASU

prior to analysis. All specimens were analyzed blind and in random order. An aliquot of

plasma from the same individual donor was analyzed in every batch as a quality control (QC)

specimen to ensure batch-to-batch consistency.

This research was approved by Arizona State University’s IRB and all clinical investigations

were conducted according to the principles expressed in the Declaration of Helsinki.

Glycan node analysis

Sample preparation. Glycan node analysis was performed on the plasma samples as

described previously [19]. Briefly, it includes four main steps (Fig 1): 1) permethylation, in

which 9μL of plasma sample containing 1μL of a 10 mM solution of heavy-labeled D-glucose

(U-13C6, 99%; 1,2,3,4,5,6,6-D7, 97%−98%) (Cambridge Isotope Laboratories), and N-acetyl-D-

[UL-13C6]glucosamine (Omicron Biochemicals, Inc.) as the internal standard was mixed with

270μL of dimethylsulfoxide (DMSO) (Sigma-Aldrich) followed by 105 μL of iodomethane

(99%, Cat. No. I8507, Sigma-Aldrich). Then, this mixture was added to a plugged 1-mL spin

column (ThermoFisher Scientific, Waltham, MA, Cat. No. 69705) containing ~0.7g of sodium

hydroxide beads (20–40 mesh, Sigma-Aldrich) which had been preconditioned by acetonitrile

(Fisher Scientific) and washed twice with DMSO prior to addition of sample. After occasion-

ally stirring the NaOH column over 11 min, the unplugged samples were spun for 15 s at 5,000

rpm (2,400g) in a microcentrifuge to extract the permethylated glycans. In order to maximize

glycan recovery, 300μL of acetonitrile was added to the NaOH column and spun down for 30 s

at 10,000 rpm (9,600g). Then, in a silanized 13 × 100 glass test tube holding 3.5 mL of 0.2 M

sodium phosphate buffer, the solution from the first spin-through was added and mixed well.

After pooling and mixing the second acetonitrile-based spin-through solution was combined

with the rest of the sample, followed by 1.2 mL of chloroform (Sigma-Aldrich). The test tube

was then capped and shaken well, followed by removal and discard of the aqueous layer. After

two additional rounds of liquid/liquid extraction, the chloroform layer was recovered and

dried under nitrogen at 74˚C. 2) The second major step was TFA hydrolysis, in which 325 μL

of 2M trifluoroacetic acid (TFA) (Sigma-Aldrich) was added to each test tube. After capping

the samples and incubating them at 121˚C for 2h, they were dried down under nitrogen at

74˚C. 3) The third major step involved reduction of sugar aldehydes, in which the samples

were incubated for an hour after adding 475 μL of a freshly made 10 mg/mL solution of

sodium borohydride (Sigma-Aldrich) in 1M ammonium hydroxide (Sigma-Aldrich). Then

63 μL of methanol (Honeywell Burdick & Jackson) was added to each sample before drying at

74˚C under nitrogen. Next, 125 μL of a 9:1 (v/v) methanol: acetic acid solution was added to

each test tube followed by drying under nitrogen. To fully dry the samples, they were then

placed in vacuum desiccator for approximately 20 min. 4) The fourth major step consisted of

acetylation of nascent hydroxyl groups, in which the sample residue in each test tube was dis-

solved by 18 μL water before adding 250 μL of acetic anhydride (Sigma-Aldrich). After sonicat-

ing the samples for 2 min and incubating for 10 min at 60˚C, 230 μL of concentrated TFA was

added to each sample, followed by incubation of the capped samples for 10 min at 60˚C. Then,

2 mL methylene chloride (Fisher Scientific) was added to each sample followed by 2 mL of
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water. Next, liquid/liquid extraction was done twice in which the methylene chloride layer was

saved and then transferred into a silanized autosampler (ThermoFisher Scientific), dried

under nitrogen, reconstituted in 120 μL of acetone (Avantor Performance Materials), and

capped to be injected onto the GC-MS.

Gas chromatography-mass spectrometry. As previously described [21], an Agilent

Model A7890 gas chromatograph (equipped with a CTC PAL autosampler) was used coupled

to a Waters GCT (time-of-flight) mass spectrometer to analyze the prepared samples. For all

samples, one injection of 1μL was made at split ratio of 20:1 onto an Agilent split-mode liner

containing a small plug of silanized glass wool with the temperature set to 280˚C. The DB-5ms

GC column that was used for chromatography was 30 m. The oven temperature, initially kept

at 165˚C, was increased at a rate of 10˚C/min up to 265˚C. Immediately after that, the temper-

ature was increased at a rate of 30˚C/min to 325˚C, then held constant for 3 min. The transfer

line to the mass spectrometer was kept at 250˚C. Following the elution of sample components

from the GC column, they were subjected to electron ionization (70 eV, 250˚C) and analyzed

in the m/z range of 40–800 with a scan cycle time of 0.1 s. Daily calibration and tuning of the

mass spectrometer was done using perfluorotributylamine.

The quantification method is described in detail elsewhere [18]. Briefly, summed extracted

ion chromatogram peaks were integrated automatically and checked manually using Quan-

Lynx software. The collected data were then exported to a spreadsheet for detailed analysis.

Human C-reactive protein ELISA assay

The Invitrogen™ Human C-Reactive Protein ELISA kit (Catalog Number KHA0031, Thermo-

Fisher Scientific) was used, following the manufacturer instructions, to measure the concentra-

tion of CRP in patient plasma samples. Final absorbance values were read at 450 nm by

Thermo Scientific Multiskan Go plate reader and the concentration of samples were calculated

using SkanIt Software 3.2.

Statistical analysis

Individual extracted-ion chromatographic peak areas for each glycan node were normalized

using one of two possible approaches: 1) Individual hexose residues were normalized to heavy

glucose and individual N-acetylhexosamine (HexNAc) residues were normalized to heavy N-

acetyl glucosamine (heavy GlcNAc). 2) Individual hexose residues were normalized to the sum

of all endogenous hexose residues. Likewise, each HexNAc residue was normalized to the sum

of all endogenous HexNAcs. The average %CV calculated based on the analysis of the QC sam-

ple in each batch shows that the latter normalization method provides better inter-batch repro-

ducibility (< 10% for the four most elevated glycan nodes) but the former normalization

method performs better in separating the patient groups while still keeping the average inter-

batch %CV in an acceptable range (i.e., < 18%). Unless otherwise noted, results described

below are based on normalization with heavy glucose and heavy GlcNAc. All extracted-ion

chromatographic peak areas for all samples, including their normalization to heavy glucose or

heavy GlcNAc and normalization to the sum of all endogenous hexoses or HexNAcs as well as

%CV values for batch-to-batch QC samples are included in Supporting Information (S1 File).

For both the glycan node data and the CRP ELISA data, outliers within each clinical group

(Control, NED, NMIBC and MIBC) were removed after log10 transformation using the ROUT

method at Q = 1% by GraphPad Prism 7. After removing the outliers, the anti-log of each

value was taken to reverse the transformation. To identify differences between clinical groups,

the Kruskal-Wallis test was performed followed by the Benjamini-Hochberg false discovery

correction procedure at a 5% false discovery rate using RStudio Version 1.0.143. Univariate
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distributions and ROC curves were plotted using GraphPad Prism 7. The ability of certain gly-

can nodes to predict bladder cancer recurrence was evaluated by performing Cox proportional

hazards regression models using SAS 9.4. Correlations between CRP and glycan nodes were

examined using Pearson correlation in GraphPad Prism 7.

Results

Altered glycan features in UCC

The relative abundance of 19 glycan “nodes” was quantified in each of the control, NED,

NMIBC, and MIBC patient samples. Each of these nodes contributed at least 1% of the sum

total of all hexoses or all HexNAcs. Data normalized to heavy, stable isotope-labeled glucose

and GlcNAc internal standards were first evaluated for statistically significant differences

between all four patient groups. No differences were found between MIBC, NMIBC and NED

patients (Table 1). However, relative to the certifiably healthy controls, statistically significant

changes were found in more than half of the glycan nodes measured in NED, NMIBC, and

MIBC patients (Table 1). Among these glycan nodes, the only one that was decreased in the

current and former cancer patient samples was 4-linked glucose (i.e., 4-Glc, which is mostly

derived from glycolipids). The same trend was previously observed in lung cancer patient sam-

ples [21]. The rest of the altered nodes were increased in current and former UCC patients

compared to the certifiably healthy controls.

There were four glycan nodes that were most elevated in the current and former UCC

patients relative to the certifiably healthy controls, including 6-linked galactose, 2,4-linked

Table 1. Statistically significant differences between controls and bladder cancer patient sub-cohortsa.

Glycan Nodes b,c Control vs. NED Control vs. NMIBC Control vs. MIBC NED vs. NMIBC NED vs. MIBC NMIBC vs MIBC

t-Fucose i i ii ns ns ns

t-Gal ns ns ns ns ns ns

2-Man iii ii iii ns ns ns

4-Glc ns d ns ns ns ns

3-Gal ns ns ns ns ns ns

6-Gal iiii iii ii ns ns ns

3,4-Gal ns ns ns ns ns ns

2,4-Man iii ii i ns ns ns

2,6-Man iiii iiii ii ns ns ns

3,6-Man i ns ns ns ns ns

3,6-Gal ns ns ns ns ns ns

3,4,6-Man i i i ns ns ns

t-GlcNAc i i ns ns ns ns

4-GlcNAc ii ii i ns ns ns

3-GlcNAc ii i ii ns ns ns

3-GalNAc ns ns i ns ns ns

3,4-GlcNAc ii ii ii ns ns ns

4,6-GlcNAc ns ns ns ns ns ns

3,6-GalNAc iii ii iii ns ns ns

a Individual hexose residues were normalized to heavy glucose and individual HexNAc residues were normalized to heavy GlcNAc).
b Significance was determined by the Kruskal-Wallis test followed by the Benjamini-Hochberg correction procedure at a 5% false discovery rate.
c “ns” stands for “not significant”. “i” and “d” stand for “increased” or “decreased” glycan levels in the cohort with clinically more advanced disease listed in the column

header. “i” or “d” indicates p< 0.05, “ii” or “dd” indicates p < 0.01, “iii” or “ddd” indicates p < 0.001, and “iiii” or “dddd” indicates p < 0.0001.

https://doi.org/10.1371/journal.pone.0201208.t001
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mannose, 2,6-linked mannose, and 3,4-linked GlcNAc. These nodes correspond to α2–6 sialyla-

tion, β1–4 branching, β1–6 branching, and outer-arm fucosylation, respectively [18, 21]. The

univariate distributions of these four glycan nodes in each of the four clinical groups are shown

in Fig 3. ROC curves for current and former UCC patients vs. the certifiably healthy controls

are also shown (Fig 3). The distribution of each of these glycan nodes within each cohort shows

that patients with no evidence of disease (NED) have similar glycosylation profiles to patients

with active disease (NMIBC and MIBC) and that significant increases in these glycan nodes can

only be seen when comparing current and former UCC patients to the certifiably healthy con-

trols—but not when comparing amongst the three current and former UCC patient subgroups

(Table 1 and Fig 3). Data normalized to the sum of endogenous hexoses or HexNAcs were not

as effective at distinguishing the control specimens from those from current or former bladder

cancer patients (Table 2 and Fig 4). However, as explained in the Discussion section, these data

indicate that significant qualitative shifts in glycan composition are observed in current and for-

mer UCC patients as opposed to mere increases in the absolute abundance of glycans.

The average age of the certifiably healthy living kidney donors (controls) was 47, while the

average age for the NED, NMIBC and MIBC patients was 74, 76, and 73, respectively. Yet after

correcting for multiple comparisons, no statistically significant correlation of any glycan node

with age could be found when pooling data from all cohorts and evaluating correlations for the

age range in which there was overlap between the controls and the current and former UCC

patients (i.e., ages 45–67; see Fig 5). Likewise, no significant correlations with age were

observed within the certifiably healthy controls or within the current/former UCC patients

when these groups were considered in isolation (not shown).

Prognostic value of glycan nodes

Within the NED cohort there were numerous samples with high levels of specific glycan nodes

that were well out of the range observed in the controls—and which were similar to the cancer

patient samples—even though the NED patients were clinically free of disease (Fig 3). These

observations led to evaluation of the ability of glycan nodes to predict recurrence in a Cox pro-

portional hazards regression model. After breaking down glycan node data into quartiles and

adjusting for age, gender, and time from cancer (i.e., time elapsed since there was evidence of

cancer in a NED patient), 6-linked galactose and 2,6-linked mannose, which correspond to

α2–6 sialylation and β1–6 branching, respectively, predicted recurrence with p-values

of< 0.05. The top α2–6 sialylation quartile predicted recurrence from the NED state with a

hazard ratio of 15 relative to all other quartiles combined (lower bound at 95% CL = 1.3; upper

bound at 95% CL = 180; p = 0.029). Similarly, the top β1–6 branching quartile predicted recur-

rence from the NED state with a hazard ratio of 11 relative to all other quartiles combined

(lower bound at 95% CL = 1.2; upper bound at 95% CL = 110; p = 0.037). The differences in

the rates of recurrence for the top α2–6 sialylation and β1–6 branching quartiles compared to

all other quartiles are shown in the progression-free survival curves (Fig 6).

CRP correlation with glycan nodes

CRP was measured in order to correlate changes in patient glycan nodes with patient inflam-

mation status. The average level of CRP in the certifiably healthy controls was 1.76 mg/L

whereas the NED, NMIBC, and MIBC samples had average CRP levels of 3.84, 3.21, and 3.08

mg/L, respectively (which are above the normal range of CRP (<3.0 mg/L) [28]). The levels of

6-linked galactose, which corresponds to α2–6 sialylation, positively correlated with CRP

(r = 0.34, p< 0.001), as did the levels of 2,6-linked mannose, which corresponds to β1–6

branching (r = 0.38, p<0.001) (Fig 7).
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Discussion

Out of 19 quantified glycan nodes, four of them, each corresponding to a unique glycan feature

including α2–6 sialylation, β1–4 branching, β1–6 branching and outer-arm fucosylation, were

most significantly elevated in UCC patients compared to certifiably healthy individuals

(Table 1 and Fig 3). Unexpectedly, cancer-free patients with a history of UCC (NEDs) had gly-

can node distributions that were similar to both the early and late-stage cancer patients but dis-

tinct from the controls (Fig 3). And, unlike other types of cancers that we have reported upon

previously [21], glycan node-based features were at the same level in later stages of UCC

(MIBC patients) as in earlier stages (NMIBC patients). These findings were unanticipated and

indicate that the distinct plasma glycan features such as α2–6 sialylation, β1–4 branching, β1–6

branching, bisecting GlcNAc and core fucosylation that were directly quantified by glycan

node analysis are not capable of distinguishing patients with active UCC from patients in

remission.

Fig 3. Distributions and ROC curves for the most highly elevated glycan node markers in former & current UCC patients relative to

healthy controls when data were normalized to heavy glucose or heavy GlcNAc. Patient distributions are shown in (a-d). The Kruskal-

Wallis test was performed followed by Dunn’s post hoc test. The letters at the top of the data points show statistically significant differences

between the patient groups; groups with same letter do not have a significant difference. (e-h) ROC curves for the different sub-cohorts of

UCC patients vs. healthy individuals. Areas under the ROC curves are provided in parenthesis next to the stated patient groups. As

explained in the Discussion, despite the promising AUCs and shapes of some of these ROC curves, these data do not indicate that plasma/

serum glycan nodes will potentially serve as clinically useful diagnostic markers of UCC.

https://doi.org/10.1371/journal.pone.0201208.g003

Table 2. Statistically significant differences between controls and bladder cancer patient sub-cohorts with data normalization to the sum of all endogenous hexoses

or HexNAcs.

Glycan Nodes a,b Control vs. NED Control vs. NMIBC Control vs. MIBC NED vs. NMIBC NED vs. MIBC NMIBC vs MIBC

t-Fucose ns ns ns ns ns ns

t-Gal dd dd ns ns ns ns

2-Man ns ns ns ns ns ns

4-Glc ddd dddd d ns ns ns

3-Gal ns ns ns ns ns ns

6-Gal i ii ns ns ns ns

3,4-Gal ns ns ns ns ns ns

2,4-Man ns ns ns ns ns ns

2,6-Man ii iii ns ns ns ns

3,6-Man ns ns ns ns ns ns

3,6-Gal ns ns ns ns ns ns

3,4,6-Man ns ns ns ns ns ns

t-GlcNAc ns ns ns ns ns ns

4-GlcNAc ns ns ns ns ns ns

3-GlcNAc ns ns ns ns ns ns

3-GalNAc dd d ns ns ns ns

3,4-GlcNAc i ns i ns ns ns

4,6-GlcNAc ns dd ns ns ns ns

3,6-GalNAc ns ns ns ns ns ns

a Significance was determined by the Kruskal-Wallis test followed by the Benjamini-Hochberg correction procedure at a 5% false discovery rate.
b “ns” stands for “not significant”. “i” and “d” stand for “increased” or “decreased” glycan levels in the cohort with clinically more advanced disease listed in the column

header. “i” or “d” indicates p< 0.05, “ii” or “dd” indicates p < 0.01, “iii” or “ddd” indicates p < 0.001, and “iiii” or “dddd” indicates p < 0.0001.

https://doi.org/10.1371/journal.pone.0201208.t002
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In order to interpret the physiological significance of these findings, it must be understood

that the glycans being measured are from high-concentration glycoproteins derived primarily

from the liver (i.e., transferrin, alpha-2-macroglobulin, haptoglobin, etc) and the immune

Fig 4. Distributions and ROC curves for the most highly elevated glycan node markers in former & current UCC patients relative to

healthy controls when data were normalized to sum of endogenous Hexoses or HexNAcs. Patient distributions are shown in (a-d). The

Kruskal-Wallis test was performed followed by Dunn’s post hoc test. The letters at the top of the data points show statistically significant

differences between the patient groups; groups with a common letter do not have a significant difference. (e-h) ROC curves for different

groups of bladder cancer patients vs. certifiably healthy individuals. Area under the ROC curves are provided in parenthesis next to the

stated patient groups. “NS” next to the area under the ROC curves shows that there is no significant difference between the two groups that

are being compared. These data do not indicate that plasma/serum glycan nodes will potentially serve as clinically useful diagnostic markers

of UCC.

https://doi.org/10.1371/journal.pone.0201208.g004

Fig 5. Correlation between age and the most highly elevated glycan node markers in former & current UCC patients relative to healthy controls

when data were normalized to heavy glucose or heavy GlcNAc. Pearson correlation was used to evaluate this correlation. The common age range

between all cohorts was 45–67. “NS” next to the r-value indicates that the Pearson correlation was not statistically significant. Distribution of the

healthy controls is demonstrated by red dots. Distribution of the different sub-cohorts of UCC patients is demonstrated by black triangles.

https://doi.org/10.1371/journal.pone.0201208.g005
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system (i.e., IgG antibody glycans) rather than being sloughed off or secreted by cancer cells

themselves [31, 32]. These macro-level (mg/mL scale) changes in blood plasma glycan bio-

chemistry are thought to be mediated, at least in part, by cytokines secreted from the tumor

which are recognized by the liver and/or immune system as part of a systemic inflammatory

response, altering the way that these two major glycoprotein-producing systems glycosylate

their proteins [33–38].

With this in mind, there are three possible causes for the increases in various glycan nodes

observed in Table 1 and Fig 3. First, the acute phase response in current and former UCC

patients (evidenced by elevated CRP) may induce a net increase in the total concentration of

plasma glycoproteins—and more glycoproteins means more glycans. Second, glycoprotein site

occupancy may increase. While this possibility has not been extensively studied, some evi-

dence exists that subtle but statistically significant increases in site occupancy may occur in

Fig 6. Bladder cancer recurrence curves for: (a) The top α2–6 sialylation quartile compared to all other quartiles combined. (b) The top β1–6 branching quartile

compared to all other quartiles combined. In both panels, the recurrence curves within each plot were significantly different (log-rank Mantel-Cox test; p< 0.05). The

median duration of follow-up for those that relapsed, until relapse was 6 months, and for those that did not relapse was 12 months (The median total follow-up time was

11.75 months). The results of Cox proportional hazards models are reported in the Results section.

https://doi.org/10.1371/journal.pone.0201208.g006

Fig 7. Correlation of CRP and glycan nodes. Log of CRP concentration vs. (a) α2–6 sialylation; r = 0.34 and (b) β1–6 branching; r = 0.38 are plotted. Both correlations

are statistically significant (Pearson correlation; p< 0.001).

https://doi.org/10.1371/journal.pone.0201208.g007
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steatosis and non-alcoholic steatohepatitis [39]. Third, the qualitative nature of the glycans

themselves may change. This phenomenon has repeatedly been documented in cancer and is

often the primary reason for shifts in glycan profiles—particularly when the data reported are

compositional in nature (i.e., all signals sum to 100%) [23, 40, 41]. When the glycan node data

from this study are normalized to the sum of endogenous hexose residues or HexNAc residues,

statistically significant increases in the four most elevated glycan nodes are observed in current

and former UCC patients relative to the healthy controls (Fig 4)—though these increases tend

not to be as strong as when total glycan node quantities are considered (Fig 3)—i.e., when the

data are normalized to heavy labeled internal standards. Altogether, elevated CRP levels and

the data seen in Fig 4 suggest that both the first and the third possible explanations likely con-

tribute to our observations. Assessing changes in glycan site occupancy requires establishing a

complex, custom assay for each protein in question and is beyond the scope of the present

study.

Overall, the glycan node distributions observed here in UCC suggest that UCC makes mod-

est, early-stage alterations to blood plasma glycans that, even at stages III-IV, do not reach the

extreme levels observed in pancreatic, ovarian, lung and other types of cancer [21]. To illus-

trate, lung cancer patient glycan node data from our recently published article [21] are com-

pared side-by-side with UCC patient glycan node data in Fig 8. It is notable that glycan nodes

from the smoking-matched (SM) cancer-free controls from this lung cancer study are quite

similar in their overall distributions to the NED, NMIBC and MIBC patients in the present

UCC study—and yet are strikingly elevated above the certifiably healthy controls [21]. As we

previously described [21], smoking status (provided as “never-“, “former-”or “current

smoker”) within this control group had a minor but statistically significant impact on outer-

arm and total fucosylation as well as β1–6 branching, but not on α2–6 sialylation or β1–4

branching. Yet smoking alone did not completely account for the elevation of glycan nodes in

this control cohort relative to the certifiably healthy controls. Correspondingly, even in remis-

sion, most former UCC patients with no evidence of disease (NED), tended to maintain mod-

estly elevated blood plasma glycan levels—wherein the NED patients with the most highly

elevated levels were most likely to experience relapse (Fig 6).

Though the reason(s) for glycan node elevation in nominally cancer-free individuals are

not fully known, it has previously been shown that serum glycans can be elevated in inflamma-

tory patient states in the absence of cancer [22–24]. Moreover, chronic inflammation is known

to be closely associated with the development of cancer [42–44]. Together with the observa-

tions presented here, this suggests that the elevated plasma glycan levels observed in former

UCC patients (currently in the NED state) that are prognostic of recurrence may be driven by

or simply part of inflammatory processes. To assess this possibility, we measured CRP concen-

trations and found them to be strongly significantly correlated with levels of both α2–6 sialyla-

tion and β1–6 branching (Fig 7)—an observation that goes hand-in-hand with the fact that

CRP has been found to predict UCC patient survival [26, 28].

This brings up the question of whether or not there is a mechanistic connection between

alterations in plasma glycans (associated with inflammation) and the development or progres-

sion of cancer. There is evidence for the concept that the biological landscape experiences

“grooming” or premetastatic “niche” formation prior to cancer establishing residence within

the body [45–49]. And while glycans are not solely responsible for this process, evidence exists

that they play important roles. As we have previously summarized [21] and others have

explained in detail, cell-surface glycans that facilitate resistance of galectin-mediated apoptosis

[48, 50–52] (including poly-N-acetyllactosamine modified core 2 O-glycans [53–58]) as well as

sialylated glycans that stimulate the inhibitory Siglec-7 receptor on natural killer cells [53–56]

have important roles to play in helping cancer evade the body’s natural immunity.
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Using glycan node analysis, we have previously observed major changes in distinct P/S gly-

can features in lung, pancreatic, ovarian [21], and breast cancers [20]. The results presented

here show that, relative to healthy individuals, there is a significant alteration of P/S glycan fea-

tures that correlates with inflammation and is present at the onset of UCC—but that, unlike

Fig 8. Distribution of the most highly elevated glycan node markers in former & current UCC patients relative to healthy controls with the MIBC group

separated by patient stage. Data from our recently published lung cancer study [21] are displayed side-by-side for qualitative comparison. “SM Controls” indicates

smoking status matched to the lung cancer patients on the basis of “current”, “former”, or “never-”smoker status. Letters at the top of each cohort show statistically

significant differences between the patient groups; groups with a common letter do not have a significant difference.

https://doi.org/10.1371/journal.pone.0201208.g008
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other types of cancer that we have observed to date [21], does not change in a stage-dependent

manner—even when UCC patients go into remission. Certifiably healthy individuals cannot

be considered to be clinically relevant controls for the development of cancer diagnostics—but

they do illustrate the striking changes in blood biochemistry that occur as cancer develops and

takes hold in the human body. Thus taken together with our previous observations in lung

cancer [21], the findings presented here suggest that if there are clinical applications for P/S

glycan node measurements, they most likely lie in evaluating cancer patient relapse or progres-

sion risk—or in monitoring nominally healthy persons who exhibit behaviors such as smoking

that put them at risk for the biochemical transition between a genuinely healthy state and one

in which their blood chemistry (above and beyond mere behavior) reveals a truly high-risk

state. Ultimately, however, further study is required to elucidate the potential mechanistic role

of these macro-level changes to blood glycan biochemistry in the development and overall pro-

gression of cancer.

Conclusions

α2–6 sialylation, β1–4 branching, β1–6 branching, and outer-arm fucosylation were found to

be significantly elevated in both current and former (in remission) UCC patients relative to

certifiably healthy living kidney donors, with ROC curve c-statistics averaging approximately

0.8—yet this does not make them clinically relevant diagnostic biomarkers of UCC. In contrast

to the stage-dependence that we have observed in other types of cancer [21], differences

between patients with muscle invasive UCC, non-muscle invasive UCC and patients in remis-

sion were not statistically significant. For UCC patients in remission, α2–6 sialylation and β1–

6 branching were prognostic indicators of recurrence and were correlated with CRP levels

(r = 0.34 & 0.38, resp.; p< 0.001), a known prognostic marker in UCC. Though glycan nodes

exhibited less stage-dependency in UCC than in other cancers [21], results highlighted the pro-

nounced difference between the serum glycan biochemistry of healthy individuals vs. any stage

of UCC (including remission) and underscored the concept (previously observed [21]) that for

plasma glycans the transition between a healthy state and an at-risk state is much more pro-

nounced than that between an at-risk state and early stage cancer.
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